Module # 6 Doing math in R part 2 (R Programming)
1. Consider A=matrix(c(2,0,1,3), ncol=2) and B=matrix(c(5,2,4,-1), ncol=2).
a) Find A + B
A <- matrix(c(2, 0, 1, 3), ncol = 2)
B <- matrix(c(5, 2, 4, -1), ncol = 2)
result_addition <- A + B
print(result_addition)
[,1] [,2]
[1,] 7 2
[2,] 5 2
Description: A = [2 0, 1 3 ], B = [ 5 2, 4 -1 ]. Add both A + B = [ 2+5 , 0 +2 , 1 + 4 , 3+(-1) ] = [ 7 2 , 5 2 ]
b) Find A - B
result_subtraction <- A - B
print(result_subtraction)
[,1] [,2]
[1,] -3 -2
[2,] -3 4
Description: A - B = [ 2 - 5, 0 - 2, 1 -4, 3 - (-1) ] = [ -3 -2, -3 4 ]
2. Using the diag() function to build a matrix of size 4 with the following values in the diagonal 4, 1, 2,
diagonal_values <- c(4, 1, 2, 3)
result_matrix <- diag(diagonal_values)
print(result_matrix)
[,1] [,2] [,3] [,4]
[1,] 4 0 0 0
[2,] 0 1 0 0
[3,] 0 0 2 0
[4,] 0 0 0 3
Description:
- Using the diag() function, we create a diagonal matrix with specified values on the diagonal.
- The resulting matrix has the specified values on the diagonal and zeros elsewhere
3. Generate the following matrix:
result_matrix <- diag(3, 5)
print(result_matrix)
[,1] [,2] [,3] [,4] [,5]
[1,] 3 1 1 1 1
[2,] 2 3 0 0 0
[3,] 2 0 3 0 0
[4,] 2 0 0 3 0
[5,] 2 0 0 0 3
Description:
- Using the diag() function with the argument 3 and size 5, we generate a diagonal matrix with 3 on the diagonal.
- The resulting matrix has 3 on the diagonal and zeros elsewhere.
Comments
Post a Comment